84 research outputs found

    Improving Energy Efficiency in Manufacturing Systems — Literature Review and Analysis of the Impact on the Energy Network of Consolidated Practices and Upcoming Opportunities

    Get PDF
    Global energy context has become more and more complex in the last decades: raising prices of depleting fossil fuels, together with economic crisis and new international environmental and energy policies, are forcing companies (and manufacturing industry in particular, which is responsible for 90% of industry energy consumptions, in turn making up the 51% of global energy usage, as listed on EIA, the Energy International Agency, website, last accessed on the 5th of October 2014) to cut energy wastes and inefficiencies, and to control their consumptions. Besides the existing analysis of the above mentioned regulatory and economic concerns, Energy Efficiency criticality for manufacturing systems has recently been investigated and proved also by the analysis of its connection with Productivity Efficiency [1-4], which resulted to be strong and mutual, and of the numerous non-energy benefits achieved while performing energy efficiency measures [5], such as the improvement of corporate image and the environmental impact reduction. Over most recent years, Energy Efficiency has therefore become a critical factor for industrial plants’ competitiveness, and is now definitely considered as a key driver to economic development and sustainability. But, despite it all, it is often still difficult for many companies to understand its effectiveness, in good part because of the difficulties met in focusing its technical and economic benefits, as Laitner [6] highlights: “Energy Efficiency has been an invisible resource. Unlike a new power plant or a new oil well, we do not see energy efficiency at work. (...) energy efficiency may be thought of as the cost-effective investments in the energy we do not use either to produce a certain amount of goods and services within the economy.” As a matter of fact, Energy Efficiency still represents a challenging goal for most companies. As above mentioned, numerous problems are yet to overcome in quantifying its benefits and evaluating the cost-effectiveness of related investments, and most of all the huge variety, complexity and changeability of fields, technologies and methodologies involved in its improvement in production systems are responsible for the slowing down of their resolution and of the spread of Energy Efficiency measures and culture. In fact, in order to individuate and prioritize suitable improvement interventions and Energy Efficiency opportunities, and to design and customize the Energy Management System or the Monitoring and Control System according to a particular company’s needs, a deep and complete knowledge of many different subjects and disciplines (ranging from physics and thermodynamics to economy and project management) is needed, besides a good ability and practical sensibility to direct one’s efforts in the right way. Considering that Energy Efficiency isn’t obviously the core business of manufacturing industry, such effort might sometimes be very laborious, and in recent years many companies have decided to demand Energy Management activities to specialized external companies, the so-called Energy Service Companies (ESCos). ESCos generally own the know-how required to individuate Energy Efficiency measures and are also able to fund Energy Efficiency investments (see [7] for a specific literature review); what they usually do not own is a deep understanding of the company’s dynamics, situations and needs, as well as the capability to draw a long-term development path towards the achievement of a diffused Energy Efficiency culture within the company, which shall be consistent with the company’s vision and policies and is essential in order to consolidate and continuously upgrade improvements in such sector. It is then crucial for companies to have at least a general consciousness of all intervention areas and of all possible improvements, both managerial (and/or behavioural) and technological, that could be pursued and achieved, in order to be able to lead their own way towards their sustainable development, and also to capitalize ESCOs’ assistance and services. In order to overcome part of these difficulties, and in particular to make it easier for companies to address their efforts and catch best efficiency opportunities, a logical and systemic approach is necessary: it would help not to overlook any possible area of improvement, to easily classify and understand those areas, but also to identify the most suitable and cost-effective, and eventually to prioritize them. In the light of this, some studies have already been conducted in order to find out methods and tools to assess the current level of maturity of a company in the Energy Management field [8], and to help individuating a possible development path. However, although they point out some possible development scenarios, they do not provide a complete and organic categorization of all possible areas of intervention, so as to make it easier for practitioners to address their efforts into the right way. In this chapter, a new conceptual scheme to organize and classify Energy Efficiency measures is defined, leading from the definition of Energy Cost per Product Unit and further breaking it up in order to identify and define all possible areas of intervention, providing for each of them a brief overview of possible measures and opportunities and a specific literature review. All scientific papers, books and technical papers considered for the literature review of each area (chosen on the basis of a wide literature research and on authors’ on-field experience) are recalled and systematized in Table 1, so that the reader is guided through their examination and rapidly addressed to their consultation. In addition, a qualitative evaluation of the impact of some possible Energy Efficiency measures from each area on the energy network is given, in order to give both practitioners and researchers a first input to further focus on this additional feasibility evaluation criteria for Energy Efficiency measures, which enables to evaluate them on a national or international level rather than considering the benefits or concerns belonging to a single company

    A proposal for energy servicesʼ classification including a product service systems perspective

    Get PDF
    Western manufacturing companies have lately started to rethink their approach to sustainability, mainly because of three different issues arising in the international context: the economic and financial crisis that has been slowing down the international marketsʼ growth, the necessity to increase competitiveness and the growing awareness of environmental and energy problems. This process has eventually led to the spread of servitization strategies causing the transformation of several equipment/components manufacturers into service providers, as well as to the creation of the concept of Product-Service Systems (PSS). Furthermore, a more focused attention to energy efficiency has arisen, with the dual objective of both containing costs and meeting international regulations. The intersection of these two development paths is the constant increase in the supply of energy services, which can be marketed together with devices, machines or energy vectors, creating a peculiar form of PSS. In the present work, a new classification is proposed to map different types of energy services, based on existing categorizations of PSS and enriching them with new parameters which are typical of energy services literature, such as the level of risks sharing. The main objective of this work is to highlight the tight connection between the provision of energy services and the concepts of PSS and sustainability, in order to provide a new general classification for energy services, discussed separately and fragmentary so far in literature

    new efficiency opportunities arising from intelligent real time control tools applications the case of compressed air systems energy efficiency in production and use

    Get PDF
    Abstract Most of the production facilities in Europe make use of compressed air to drive equipment for manufacturing and Compressed Air Systems (CAS) account for about 10% of the total electrical energy consumption of European industries. Therefore, reducing CAS energy consumption is a crucial task to meet the European goals of improving energy efficiency and reducing environmental impact of the industrial sector. This work is part of a wider research activity aimed at developing a strategy to optimize the energy use in CAS. In particular, this paper shows the importance of monitoring energy consumption and control energy use in compressed air generation, to enable energy saving practices, enhance the outcomes of energy management projects, and to guide industries in energy management. We propose a novel procedure in which measured data are compared to a baseline obtained through mathematical modelling (i.e. regression functions) to enable faults detection and energy accounting, through the use of control charts (i.e. variations' control and the Cumulative Sums). The effectiveness of the proposed methodology is demonstrated in a case study, namely the compressed air system of a pharmaceutical manufacturing plant

    assessing and improving compressed air systems energy efficiency in production and use findings from an explorative study in large and energy intensive industrial firms

    Get PDF
    Compressed Air Systems (CAS) are one of the most common and energy intensive utilities in industry, representing up to 10% of the industrial energy needs. Nevertheless, benchmarks currently available are usually based on nominal data and referred to the quality of the design, while there are still no available benchmarks based on measured industrial data, taking into consideration actual operating conditions, and referred to compressed air production and, most of all, use. In accordance with the Italian transposition of the European Directive 2012/27/EU (i.e. Legislative Decree 102/2014) large and energy-intensive enterprises have been asked to perform mandatory energy audits in 2015. In this context, a data collection focused on CAS has been carried out by means of a semi-structured questionnaire in the form of a spreadsheet. First data analyses performed and relative findings are here illustrated, together with the next steps for the creation of reliable sectorial and cross-sectorial benchmarks

    Terahertz confocal microscopy with a quantum cascade laser source

    Get PDF
    We report on the implementation of a confocal microscopy system based on a 2.9 THz quantum cascade laser source. Lateral and axial resolutions better than 70 \u3bcm and 400 \u3bcm, respectively, are achieved, with a large contrast enhancement compared to the non-confocal arrangement. The capability of resolving overlapping objects lying on different longitudinal planes is also clearly demonstrated

    Aldehyde dehydrogenase 2 in the spotlight: The link between mitochondria and neurodegeneration

    Get PDF
    Growing body of evidence suggests that mitochondrial dysfunctions and resultant oxidative stress are likely responsible for many neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Aldehyde dehydrogenase (ALDH) superfamily plays a crucial role in several biological processes including development and detoxification pathways in the organism. In particular, ALDH2 is crucial in the oxidative metabolism of toxic aldehydes in the brain, such as catecholaminergic metabolites (DOPAL and DOPEGAL) and the principal product of lipid peroxidation process 4-HNE. This review aims to deepen the current knowledge regarding to ALDH2 function and its relation with brain-damaging processes that increase the risk to develop neurodegenerative disorders. We focused on relevant literature of what is currently known at molecular and cellular levels in experimental models of these pathologies. The understanding of ALDH2 contributions could be a potential target in new therapeutic approaches for PD and AD due to its crucial role in mitochondrial normal function maintenance that protects against neurotoxicity.Fil: Deza Ponzio, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Herrera, Macarena Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Bellini, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Virgolini, Miriam Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; Argentin

    Chest X-ray Analysis With Deep Learning-Based Software as a Triage Test for Pulmonary Tuberculosis: An Individual Patient Data Meta-Analysis of Diagnostic Accuracy.

    Get PDF
    BACKGROUND: Automated radiologic analysis using computer-aided detection software (CAD) could facilitate chest X-ray (CXR) use in tuberculosis diagnosis. There is little to no evidence on the accuracy of commercially available deep learning-based CAD in different populations, including patients with smear-negative tuberculosis and people living with human immunodeficiency virus (HIV, PLWH). METHODS: We collected CXRs and individual patient data (IPD) from studies evaluating CAD in patients self-referring for tuberculosis symptoms with culture or nucleic acid amplification testing as the reference. We reanalyzed CXRs with three CAD programs (CAD4TB version (v) 6, Lunit v3.1.0.0, and qXR v2). We estimated sensitivity and specificity within each study and pooled using IPD meta-analysis. We used multivariable meta-regression to identify characteristics modifying accuracy. RESULTS: We included CXRs and IPD of 3727/3967 participants from 4/7 eligible studies. 17% (621/3727) were PLWH. 17% (645/3727) had microbiologically confirmed tuberculosis. Despite using the same threshold score for classifying CXR in every study, sensitivity and specificity varied from study to study. The software had similar unadjusted accuracy (at 90% pooled sensitivity, pooled specificities were: CAD4TBv6, 56.9% [95% confidence interval {CI}: 51.7-61.9]; Lunit, 54.1% [95% CI: 44.6-63.3]; qXRv2, 60.5% [95% CI: 51.7-68.6]). Adjusted absolute differences in pooled sensitivity between PLWH and HIV-uninfected participants were: CAD4TBv6, -13.4% [-21.1, -6.9]; Lunit, +2.2% [-3.6, +6.3]; qXRv2: -13.4% [-21.5, -6.6]; between smear-negative and smear-positive tuberculosis was: were CAD4TBv6, -12.3% [-19.5, -6.1]; Lunit, -17.2% [-24.6, -10.5]; qXRv2, -16.6% [-24.4, -9.9]. Accuracy was similar to human readers. CONCLUSIONS: For CAD CXR analysis to be implemented as a high-sensitivity tuberculosis rule-out test, users will need threshold scores identified from their own patient populations and stratified by HIV and smear status

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    VIII Encuentro de Docentes e Investigadores en Historia del Diseño, la Arquitectura y la Ciudad

    Get PDF
    Acta de congresoLa conmemoración de los cien años de la Reforma Universitaria de 1918 se presentó como una ocasión propicia para debatir el rol de la historia, la teoría y la crítica en la formación y en la práctica profesional de diseñadores, arquitectos y urbanistas. En ese marco el VIII Encuentro de Docentes e Investigadores en Historia del Diseño, la Arquitectura y la Ciudad constituyó un espacio de intercambio y reflexión cuya realización ha sido posible gracias a la colaboración entre Facultades de Arquitectura, Urbanismo y Diseño de la Universidad Nacional y la Facultad de Arquitectura de la Universidad Católica de Córdoba, contando además con la activa participación de mayoría de las Facultades, Centros e Institutos de Historia de la Arquitectura del país y la región. Orientado en su convocatoria tanto a docentes como a estudiantes de Arquitectura y Diseño Industrial de todos los niveles de la FAUD-UNC promovió el debate de ideas a partir de experiencias concretas en instancias tales como mesas temáticas de carácter interdisciplinario, que adoptaron la modalidad de presentación de ponencias, entre otras actividades. En el ámbito de VIII Encuentro, desarrollado en la sede Ciudad Universitaria de Córdoba, se desplegaron numerosas posiciones sobre la enseñanza, la investigación y la formación en historia, teoría y crítica del diseño, la arquitectura y la ciudad; sumándose el aporte realizado a través de sus respectivas conferencias de Ana Clarisa Agüero, Bibiana Cicutti, Fernando Aliata y Alberto Petrina. El conjunto de ponencias que se publican en este Repositorio de la UNC son el resultado de dos intensas jornadas de exposiciones, cuyos contenidos han posibilitado actualizar viejos dilemas y promover nuevos debates. El evento recibió el apoyo de las autoridades de la FAUD-UNC, en especial de la Secretaría de Investigación y de la Biblioteca de nuestra casa, como así también de la Facultad de Arquitectura de la UCC; va para todos ellos un especial agradecimiento
    corecore